计算资源有限的人如何在Deep Learning领域成长? – 知乎
再进一步的话,就是多看论文,我一直觉得论文其实是最最重要的,闲的没事干就看论文,跑实验过程中就看论文,充分利用所有时间刷论文,初学者而言,五十篇论文加三五篇复现就足以对某个领域有较为深入的了解了。如果看完五百以上论文,其实很多领域之间都能很好地串起来了。这也是一个极为重要的避免做很多无用实验的手段。 Source: 计算资源有限的人如何在Deep Learning领域成长? – 知乎
macos – Formatting USB Disk As EXT3 On Mac – Ask Different
I needed to format a partition to ext3 on my USB flash drive. The drive was already formatted, and had 3 partitions, and I wanted to convert partition 1 from FAT32 to ext3. Source: macos – Formatting USB Disk As EXT3 On Mac – Ask Different Also works for ext4.
iOS 13 – NSHipster
We’ve scavenged the best bits out of the iOS 13 Release Notes API diffs, and now present them to you. Source: iOS 13 – NSHipster
为什么江南七怪说没有练武的资质的郭靖,后来却成为天下第一? – 知乎
郭靖的习武生涯,其实是一个孩子上学的过程。 首先来了七个中小学老师,想把他教成全才。这些老师有的精通暗器、有的精通轻功、有的精通硬气功、有的精通剑术、有的精通马术,他们的共同点是:都没达到一流水平,甚至也没见过一流水平是什么样的。 遇上马钰,他才上了大学。大学老师自己可能不是一流水平,但起码知道如何通向一流水平。 郭靖最幸运的是,遇上了一个优秀的研究生导师:洪七公。洪七公直接告诉他,你是个当数学家的料,别纠结脑筋急转弯了。 周伯通是郭靖的博导,他把自己都没练过的九阴真经扔给郭靖,告诉他:“练吧,你有这个水平,但练出来是啥样,我也不知道,看你自己水平了。” Source: 为什么江南七怪说没有练武的资质的郭靖,后来却成为天下第一? – 知乎
Training YOLOv3 : Deep Learning based Custom Object Detector | Learn OpenCV
In this step-by-step tutorial, we start with a simple case of how to train a 1-class object detector using YOLOv3. The tutorial is written with beginners in mind. Continuing with the spirit of the holidays, we will build our own snowman detector. Source: Training YOLOv3 : Deep Learning based Custom Object Detector | Learn OpenCV
UART原理解剖 – 知乎
UART最根本的数据流格式(图中错误,是8位数据,实际上数据位数可以自己随意设置)。可以看到,除关键数据的那8bit,前前后后还规定了低电平的起始位、奇偶校检位和高电平的停止位及空闲位,这些特别的位就是信号持有的个人识别证件。如果把通讯线比作高速路,而信号上路前,就必须有标准规范的证件,不然就白跑一趟了。 Source: UART原理解剖 – 知乎
5 Minute Modules – NTRIP, RTK and Base Stations – YouTube
5 Minute Modules – NTRIP, RTK and Base Stations
Chris Achard on Twitter: “🔥 Learn React in 10 tweets (with hooks) 👇” / Twitter
Facebook Model Pretrained on Billions of Instagram Hashtags Achieves SOTA Results on Top-1 ImageNet
Pretraining models on the ImageNet dataset has been a mainstream research approach for years, but in today’s digital world where data is growing by orders of magnitude the 10 year-old ImageNet dataset is now considered relatively small in size. That motivated Facebook to explore how pretraining a machine learning model on a large-scale, weakly-supervised dataset […]
首个镜子分割网络问世,大连理工、鹏城实验室、香港城大出品 | ICCV 2019 – 知乎
镜子作为日常生活中非常重要的物体无处不在,不仅能够反射光线,能呈现出周围物体或者场景的镜像。这就导致计算机视觉系统或者机器人一旦遇到有镜子的场景,性能就会大幅下降,可以说是遇到了克星。 Source: 首个镜子分割网络问世,大连理工、鹏城实验室、香港城大出品 | ICCV 2019 – 知乎